Tissue-Specific Remodeling of the Mitochondrial Proteome in Type 1 Diabetic Akita Mice

نویسندگان

  • Heiko Bugger
  • Dong Chen
  • Christian Riehle
  • Jamie Soto
  • Heather A. Theobald
  • Xiao X. Hu
  • Balasubramanian Ganesan
  • Bart C. Weimer
  • E. Dale Abel
چکیده

OBJECTIVE To elucidate the molecular basis for mitochondrial dysfunction, which has been implicated in the pathogenesis of diabetes complications. RESEARCH DESIGN AND METHODS Mitochondrial matrix and membrane fractions were generated from liver, brain, heart, and kidney of wild-type and type 1 diabetic Akita mice. Comparative proteomics was performed using label-free proteome expression analysis. Mitochondrial state 3 respirations and ATP synthesis were measured, and mitochondrial morphology was evaluated by electron microscopy. Expression of genes that regulate mitochondrial biogenesis, substrate utilization, and oxidative phosphorylation (OXPHOS) were determined. RESULTS In diabetic mice, fatty acid oxidation (FAO) proteins were less abundant in liver mitochondria, whereas FAO protein content was induced in mitochondria from all other tissues. Kidney mitochondria showed coordinate induction of tricarboxylic acid (TCA) cycle enzymes, whereas TCA cycle proteins were repressed in cardiac mitochondria. Levels of OXPHOS subunits were coordinately increased in liver mitochondria, whereas mitochondria of other tissues were unaffected. Mitochondrial respiration, ATP synthesis, and morphology were unaffected in liver and kidney mitochondria. In contrast, state 3 respirations, ATP synthesis, and mitochondrial cristae density were decreased in cardiac mitochondria and were accompanied by coordinate repression of OXPHOS and peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1alpha transcripts. CONCLUSIONS Type 1 diabetes causes tissue-specific remodeling of the mitochondrial proteome. Preservation of mitochondrial function in kidney, brain, and liver, versus mitochondrial dysfunction in the heart, supports a central role for mitochondrial dysfunction in diabetic cardiomyopathy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type 1 Diabetic Akita Mouse Hearts Are Insulin Sensitive but Manifest Structurally Abnormal Mitochondria That Remain Coupled Despite Increased Uncoupling Protein 3

OBJECTIVE Fatty acid-induced mitochondrial uncoupling and oxidative stress have been proposed to reduce cardiac efficiency and contribute to cardiac dysfunction in type 2 diabetes. We hypothesized that mitochondrial uncoupling may also contribute to reduced cardiac efficiency and contractile dysfunction in the type 1 diabetic Akita mouse model (Akita). RESEARCH DESIGN AND METHODS Cardiac func...

متن کامل

Nonobese, insulin-deficient Ins2Akita mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling.

Although insulin resistance has been traditionally associated with type 2 diabetes, recent evidence in humans and animal models indicates that insulin resistance may also develop in type 1 diabetes. A point mutation of insulin 2 gene in Ins2(Akita) mice leads to pancreatic beta-cell apoptosis and hyperglycemia, and these mice are commonly used to investigate type 1 diabetes and complications. S...

متن کامل

Tissue distribution of S-(2-succino)cysteine (2SC), a biomarker of mitochondrial stress in obesity and diabetes.

S-(2-succino)cysteine (2SC) is a chemical modification of proteins produced by reaction of fumarate with thiol groups in protein, a process known as succination. We propose to use the name S-(2-succino)cysteine (instead of S-(2-succinyl)cysteine) from this point on. This is to distinguish protein succination (in which fumarate forms a thioether linkage with cysteine residues) from succinylation...

متن کامل

Diabetic myopathy differs between Ins2Akita+/- and streptozotocin-induced Type 1 diabetic models.

Mechanistic studies examining the effects of Type 1 diabetes mellitus (T1DM) on skeletal muscle have largely relied on streptozotocin-induced diabetic (STZ) rodents. Unfortunately, characterization of diabetic myopathy in this model is confounded by the effects of streptozotocin on skeletal muscle independent of the diabetic phenotype. Here we define adolescent diabetic myopathy in a novel, gen...

متن کامل

Renal prostaglandin E2 receptor (EP) expression profile is altered in streptozotocin and B6-Ins2Akita type I diabetic mice.

The homeostatic function of prostaglandin E(2) (PGE(2)) is dependent on a balance of EP receptor-mediated events. A disruption in this balance may contribute to the progression of renal injury. Although PGE(2) excretion is elevated in diabetes, the expression of specific EP receptor subtypes has not been studied in the diabetic kidney. Therefore, the purpose of this study was to characterize th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2009